A Novel Type of '1-Methyluracil (Hmeu) Blue:' the Trinuclear, Mixed-metal Complex cis-[(NH₃)₂Pt(meu)₂Pd(meu)₂Pt(NH₃)₂]³⁺

Wolfgang Micklitz,^a Gerhard Müller,^b Jürgen Riede,^b and Bernhard Lippert^a*

^a Institut für Anorganische und Analytische Chemie, Universität Freiburg, D-7800 Freiburg, Federal Republic of Germany

^b Anorganisch-chemisches Institut, Technische Universität München, D-8046 Garching, Federal Republic of Germany

The formation and crystal structure of a novel heteronuclear complex, containing two d⁸ (Pt^{III}) and one d⁷ (Pd^{IIII}) metals linked through four bridging 1-methyluracilato (meu) ligands is reported, and its relationship to the 'platinum pyrimidine blues' is briefly discussed.

'Platinum pyrimidine blues,' prepared by the reaction of aquated cisplatin, *cis*-[(NH₃)₂Pt(OH₂)₂]²⁺, with pyrimidine bases such as uracil, thymine, or related ligands, have received considerable attention for their antitumour activity,¹ their property of staining nucleic acids,² and in particular for their challenging chemistry as oligomeric, mixed-valence-state compounds.³ To date, three well characterized 'platinum blues' are established, all having similar dimer-of-dimers structures [(I) in Figure 1] with bridging α -pyridonato,⁴ and 1-methyluracilato ligands,⁵ respectively, and a Pt(2.25) average oxidation state, resulting formally from the presence of three Pt^{II} and one Pt^{III}.

At least in the case of the '1-methyluracil blue,' the visible spectra clearly indicate that the Pt(2.25) species, which absorbs at 740 nm, is not responsible for the *blue* colour, but rather is a green component. With this in mind, and encouraged by our more recent findings on a rather facile substitution of NH_3 ligands in a diplatinum(III) complex,⁶ we

have attempted to synthesize, among others, a trinuclear, mixed-valence-state compound of type cis-[(NH₃)₂Pt(meu)₂-Pt(meu)₂Pt(NH₃)₂]³⁺ by the reaction of cis-(NH₃)₂Pt(meu)₂ and [Pt(OH₂)₄]²⁺ under oxidizing conditions (Hmeu = 1-methyluracil). Although these attempts have been unsuccessful as yet, the heteronuclear Pt₂Pd analogue [(II) in Figure 1] could be isolated and characterized.

The title compound, $cis-[(NH_3)_2Pt(meu)_2Pd(meu)_2-Pt(NH_3)_2]^{3+}$ (3), was obtained *via* three different routes (Scheme 1) in several modifications, depending on the conditions of crystallization (anions, pH, concentration). (a) HNO₃ oxidation of $cis-[(NH_3)_2Pt(meu)_2Pd(en)](NO_3)_2\cdot 2H_2O$ (1) (en = ethylenediamine): a solution of (1)⁺ (500 mg) in

[†] Complex (1) was obtained from cis-(NH₃)₂Pt(meu)₂⁷ and [(en)-Pd(OH₂)](NO₃)₂ in analogy to related diplatinum(π) complexes with head-head arranged meu ligands.⁸ Orange-yellow crystals, characterized by elemental analysis and X-ray crystallography.

Figure 1. Comparison of [Pt^{II}₃Pt^{III}] (I) and [Pt^{II}₂Pd^{III}] (II) structures.

conc. HNO_3 (2 ml) was kept at room temperature for 24 h. The deep blue solution was then diluted with H_2O to 20 ml and allowed to evaporate slowly at 3 °C. The yield after 2 days was 75 mg of $(3)(NO_3)_3$ ·HNO₃·5H₂O, (3a).‡§ In one instance, a second modification, $(3)(NO_3)_3 \cdot 11H_2O_1$, $(3b)_3$ was obtained in low yield. (b) To a solution of $cis-(NH_3)_2Pt(meu)_2$ (240 mg) in H₂O (20 ml) at 40 °C an aqueous solution (5 ml) of $[Pd(OH_2)_4](NO_3)_2^{10}$ (ca. 20 mmol 1⁻¹ in 1.3 M HNO₃) was slowly added. After an initial colour change to red, the solution eventually became intensely blue. After removal by filtration of a small amount of a red precipitate, the solution was allowed to evaporate at 3 °C. After 6 days, 130 mg of $(3)(NO_3)_3 \cdot 5H_2O_1$, $(3c)^{\ddagger}$ was filtered off and briefly dried in air. (c) To a solution of cis-[(NH₃)₂Pt(meu)₂Pd(meu)₂Pt(NH₃)₂]-(ClO₄)₂·2H₂O (2)¶ (195 mg) in H₂O (20 ml) at 60 °C, NaClO₄ (50 mg) and finally freshly prepared Cl₂-water (2 ml) were

 \ddagger Satisfactory elemental analyses (C, H, N, O) [and Cl for (3d)] were obtained.

§ Crystal data for (3a): C₂₀H₄₃N₁₆O₂₅PdPt₂, M = 1403.88, triclinic, space group $P\bar{1}$, a = 10.032(2), b = 10.160(2), c = 11.666(2) Å, $\alpha = 103.33(1)$, $\beta = 106.29(1)$, $\gamma = 96.03(1)^\circ$, U = 1092.1 Å³, $D_m = 2.135$, $D_c = 2.134$ g cm⁻³, Z = 1, μ (Mo- K_{α}) = 69.6 cm⁻¹, F(000) = 677, T = -35°C. 4748 Unique reflections, 4448 'observed' with $I \ge 2.0 \sigma$ (I), Lorentz-polarisation and empirical absorption correction [ω scans, $\Delta \omega = 0.8^\circ$, (sin $\theta/\lambda)_{max} = 0.639$, +h, $\pm k$, $\pm l$, Mo- K_{α} radiation, $\lambda = 0.71069$ Å, graphite monochromator, Syntex P2₁]. Solution by Patterson methods; R = 0.042, $R_w = 0.057$, $w = 1/\sigma^2(F_o)$ for 324 refined parameters (SHELX 76), $\Delta \rho_{fin} = +1.75/-1.23$ e Å⁻³.

refined parameters (SHELX 76), $\Delta \rho_{\text{fin.}} = \pm 1.75/-1.23 \text{ e}$ Å⁻³. Crystal data for (**3b**): $C_{20}H_{54}N_{15}O_{28}PdPt_2$, M = 1448.96, triclinic, space group $P\overline{1}$, a = 11.611(4), b = 10.083(2), c = 12.121(4) Å, $\alpha = 109.19(2)$, $\beta = 106.29(2)$, $\gamma = 99.73(2)^\circ$, U = 1231.8 Å³, $D_c = 1.953$ g cm⁻³, Z = 1, μ (Mo- K_{α}) = 61.7 cm⁻¹, F(000) = 705, $T = -40^\circ$ C. 4846 Unique reflections with 4240 'observed' [ω scans, $\Delta \omega = 1^\circ$, (sin $\theta/\lambda)_{max} = 0.617$]. Patterson methods, R = 0.045, $R_w = 0.052$, $w = 1/\sigma^2(F_o)$ for 275 refined parameters, $\Delta \rho_{\text{fin.}} = \pm 2.93/-1.17$ e Å⁻³ Additional, partial occupancy by water molecules of sites in the unit cell cannot be excluded on the basis of the last difference map. Atomic co-ordinates, bond lengths and angles, and thermal parameters for (**3a**) and (**3b**) have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

¶ Complex (2) was prepared from cis-(NH₃)₂Pt(meu)₂⁷ and [Pd(OH₂)₄](ClO₄)₂¹⁰ in 90% yield. Golden-brownish crystals, characterized by elemental analyses (C, H, N, O, Cl), u.v.-visible spectroscopy, and X-ray analysis.⁹

Scheme 1. Methods of preparation of (3) from the dinuclear complex (1) and the trinuclear precursor complex (2).

Figure 2. Molecular structure of the cation $[(NH_3)_2Pt(meu)_2Pd(meu)_2Pt(NH_3)_2]^{3+}$ (3a) with atom numbering (ORTEP, 50% thermal ellipsoids). Principal distances (Å) and angles (°) for (3a) [(3b)]: Pt-Pd, 2.634(1) [2.641(1)]; Pt-N(31), 2.034(7) [2.038(8)]; Pt-N(32), 2.025(7) [2.027(7)]; Pt-N(10), 2.049(7) [2.050(7)]; Pt-N(20), 2.043(7) [2.052(8)]; Pd-O(41), 1.963(7) [1.987(6)]; Pd-O(42), 1.998(7)]; N(31)-Pt-N(10), 178.9(3) [179.0(3)]; N(32)-Pt-N(20), 178.9(3) [177.7(3)]; Pd-Pt-N(31), 83.2(2) [82.8(2)]; Pd-Pt-N(32), 83.9(2) [83.2(2)]; Pt-Pd-O(41), 86.6(2) [87.1(2)]; Pt-Pd-O(42), 86.1(2) [85.6(2)].

added. The then deep-blue solution (pH 2.2) was brought to room temperature and then kept in an open beaker at 3 °C. Complex (3)(ClO₄)₃·6H₂O, (3d) \ddagger (100 mg) was filtered off after 24 h and, on addition of another 30 mg NaClO₄ and 0.5 ml of Cl₂-water, 30 mg of (3d) after a further 2 h. Compounds (3a)—(3d) exhibit the same appearance, having a metallic blue-purple lustre. When crushed, the compounds look deep blue. According to i.r. and u.v.-visible spectra, the cations in (3a)—(3d) are identical. The u.v.visible spectrum (0.1 M HNO₃ or 0.1 M HClO₄) shows three absorptions at 608 ($\epsilon \sim 9800 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$), 546 (~3800), and 354 nm (~3100). As judged from ¹H n.m.r. spectra, solutions of (3) in D₂O or DNO₃ are paramagnetic, giving a magnetic moment of 1.9 µ_B.¹¹ E.s.r. spectra of polycrystalline (3) are qualitatively similar to those of platinum blues,⁵ with somewhat different g values of 2.167(\perp) and 1.986(||) and no fine structure at room or liquid nitrogen temperatures.

Figure 2 depicts the cation of (3a). The cation of (3b) is virtually identical. Two $cis-(NH_3)_2Pt(meu-N^3)_2$ units are linked via four exocyclic O(4) oxygen atoms to palladium to give a centrosymmetric, trinuclear complex. The three metals have square-planar co-ordination spheres with two adjacent planes tilted by 14.5°. Angles about the metals are close to 90°, and Pt-N [2.025(7)-2.049(7) Å] and Pd-O distances [1.963(7), 1.998(7) Å] are normal. Certainly the most significant feature of cation (3a) is its very short Pt-Pd separation of 2.634(1) Å [2.641(1) Å in (3b)], which is a consequence of metal-metal bonding within the Pt,Pd,Pt chain. This intermetallic distance compares with 2.927(1) Å in the dinuclear (Pt^{II},Pd^{II}) complex (1) and 2.839(1) Å in the trinuclear (Pt^{II}, Pd^{II}, Pt^{II}) complex (2).9 For an unambiguous assessment of the charge of the cations in (3a) and (3b) the number of anions becomes crucial. Regardless of appreciable disorder of some of the NO_3^- ions in the structures of (3a) and (3b), the existence of more than three counter-ions can be definitely excluded for (3b). In (3a), two disordered NO_3^- ions form dimers not unlike the known hydrogen bonded $[H(NO_3)_2]^{-1}$ species¹² thereby corroborating further the presence of HNO₃ in the crystal lattice.

Finally, we note that we have isolated the complete series of complexes (1)—(3) with (en)Pt substituting the *cis*- $(NH_3)_2$ Pt moieties.

We thank the Deutsche Forschungsgemeinschaft and Degussa (loan of K_2PtCl_4) for their support. W. M. thanks the Technische Universität München for a fellowship.

Received, 23rd July 1986; Com. 1042

References

- J. P. Davidson, P. J. Faber, R. G. Fischer, S. Mansy, H. J. Peresie, B. Rosenberg, and L. VanCamp, *Cancer Chemother. Rep., Part 1*, 1975, **59**, 287; R. J. Speer, H. Ridgway, L. M. Hall, D. P. Stewart, K. E. Howe, D. Z. Lieberman, A. D. Newman, and J. M. Hill, *ibid.*, 1975, **59**, 629.
- 2 S. K. Aggarwal, G. A. Ofosu, and Y. Waku, J. Clin. Hematol. Oncol., 1977, 7, 547.
- 3 S. J. Lippard, Science, 1982, 218, 1075; B. Lippert, Inorg. Chem., 1981, 20, 4326.
- 4 J. K. Barton, D. J. Szalda, H. N. Rabinowitz, J. W. Waszczak, and S. J. Lippard, J. Am. Chem. Soc., 1979, 101, 1434; T. V. O'Halloran, M. M. Roberts, and S. J. Lippard, *ibid.*, 1984, 106, 6427.
- 5 P. K. Mascharak, I. D. Williams, and S. J. Lippard, J. Am. Chem. Soc., 1984, 106, 6428.
- 6 B. Lippert, H. Schöllhorn, and U. Thewalt, *Inorg. Chem.*, 1986, 25, 407.
- 7 D. Neugebauer and B. Lippert, J. Am. Chem. Soc., 1982, 104, 6596.
- 8 B. Lippert, D. Neugebauer, and G. Raudaschl, Inorg. Chim. Acta., 1983, 78, 161.
- 9 W. Micklitz, G. Müller, B. Huber, J. Riede, and B. Lippert, to be published.
- 10 L. I. Elding, Inorg. Chim. Acta, 1972, 6, 647.
- 11 D. F. Evans, J. Chem. Soc., 1959, 2003.
- 12 J. Emsley, Chem. Soc. Rev., 1980, 9, 91.